# Vendor Report Generator A Python tool that generates comprehensive vendor punchlist reports from Excel files. The tool processes Excel data, normalizes vendor information, calculates metrics, and generates both JSON and interactive HTML reports. ## Features - **Direct Excel Processing**: Reads Excel files directly using pandas (no LLM required) - **Data Normalization**: Automatically normalizes vendor names, statuses, and priorities - **24-Hour Updates**: Tracks items added, closed, or changed to monitor status in the last 24 hours (based on Baltimore/Eastern timezone) - **Priority Tracking**: Groups items by priority levels (Very High, High, Medium, Low) - **Oldest Unaddressed Items**: Identifies and highlights the oldest 3 unaddressed items per vendor - **Interactive HTML Reports**: Generates searchable, filterable HTML reports with tabs and filters - **JSON Export**: Exports structured JSON data for further processing ## Requirements - Python 3.8 or higher - Dependencies listed in `requirements.txt` ## Installation 1. **Clone the repository**: ```bash git clone https://gitea.lci.ge/ilia.gurielidze/vendor_report.git cd vendor_report ``` 2. **Create a virtual environment** (recommended): ```bash python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate ``` 3. **Install dependencies**: ```bash pip install -r requirements.txt ``` ## Setup 1. **Prepare your Excel files**: - Place your Excel files (`.xlsx` or `.xls`) in the `reports/` directory - Ensure your Excel files have the following columns (in order): - Column 0: Punchlist Name - Column 1: Vendor - Column 2: Priority - Column 3: Description - Column 4: Date Identified - Column 5: Status Updates - Column 6: Issue Image - Column 7: Status - Column 8: Date Completed (optional) 2. **Create necessary directories** (if they don't exist): ```bash mkdir -p reports output ``` ## Usage ### Basic Usage Generate a report from Excel files in the `reports/` directory: ```bash python3 report_generator.py ``` This will: - Process all Excel files in the `reports/` directory - Generate a JSON report at `output/report.json` - Generate an HTML report at `output/report.html` - Save preprocessed data to `output/preprocessed_data.txt` ### Command-Line Options ```bash python3 report_generator.py [OPTIONS] ``` **Options**: - `--reports-dir DIR`: Directory containing Excel files (default: `reports`) - `--output FILE`: Output JSON file path (default: `output/report.json`) - `--verbose`: Print verbose output (default: True) **Examples**: ```bash # Use a custom reports directory python3 report_generator.py --reports-dir /path/to/excel/files # Specify custom output file python3 report_generator.py --output /path/to/output/report.json # Combine options python3 report_generator.py --reports-dir my_reports --output my_output/report.json ``` ### Programmatic Usage You can also use the report generator in your own Python scripts: ```python from report_generator import generate_report # Generate report with default settings report_data = generate_report() # Or with custom settings report_data = generate_report( reports_dir="my_reports", output_file="my_output/report.json", verbose=True ) # report_data is a dictionary containing the full report structure print(f"Processed {len(report_data['vendors'])} vendors") ``` ## Report Structure ### JSON Report Structure The generated JSON report follows this structure: ```json { "report_generated_at": "2025-11-05T22:00:00", "vendors": [ { "vendor_name": "VendorName", "total_items": 10, "closed_count": 5, "open_count": 3, "monitor_count": 2, "updates_24h": { "added": [...], "closed": [...], "changed_to_monitor": [...] }, "oldest_unaddressed": [...], "very_high_priority_items": [...], "high_priority_items": [...], "closed_items": [...], "monitor_items": [...], "open_items": [...] } ], "summary": { "total_vendors": 5, "total_items": 50, "total_closed": 25, "total_open": 15, "total_monitor": 10 } } ``` ### HTML Report Features The HTML report includes: - **Summary Cards**: Overview statistics at the top - **Vendor Tabs**: Quick navigation between vendors - **Status Tabs**: Filter by status (All, Yesterday's Updates, Oldest Unaddressed, Closed, Monitor, Open) - **Search & Filters**: - Search by item name or description - Filter by vendor, status, or priority - **Quick Filters**: - Show only vendors with yesterday's updates - Show only vendors with oldest unaddressed items - Show all vendors - **Interactive Elements**: Click tabs to switch views, use filters to narrow down results ## Data Processing Details ### Vendor Name Normalization The tool automatically normalizes vendor names: - Handles case variations (e.g., "autstand" → "Autstand") - Preserves intentional capitalization (e.g., "AutStand" stays as-is) - Normalizes combined vendors (e.g., "Autstand/Beumer") - Handles vendors in parentheses (e.g., "MFO (Amazon)") ### Status Normalization Statuses are normalized to: - **Complete**: Items with status containing "complete" or "complette" - **Monitor**: Items with status containing "monitor" or "montor" - **Incomplete**: All other items (default) ### Priority Classification Priorities are classified as: - **Very High**: Priority contains "(1) Very High" or "Very High" - **High**: Priority contains "(2) High" or "High" (but not "Very High") - **Medium**: Priority contains "(3) Medium" or "Medium" - **Low**: Priority contains "(4) Low" or "Low" ### 24-Hour Window Calculation The tool uses **Baltimore/Eastern timezone (America/New_York)** for calculating 24-hour updates: - Items are considered "added in last 24h" if their `date_identified` falls on yesterday's date - Items are considered "closed in last 24h" if their `date_completed` falls on yesterday's date - Items are considered "changed to monitor" if their status is Monitor and the date falls within the 24-hour window ## Output Files After running the generator, you'll find: - `output/report.json`: Structured JSON report data - `output/report.html`: Interactive HTML report (open in browser) - `output/preprocessed_data.txt`: Human-readable preprocessed data (for debugging) ## Project Structure ``` vendor_report/ ├── report_generator.py # Main report generation script ├── data_preprocessor.py # Excel data preprocessing and normalization ├── html_generator.py # HTML report generation ├── models.py # Pydantic data models ├── excel_to_text.py # Utility for Excel to text conversion ├── requirements.txt # Python dependencies ├── reports/ # Directory for input Excel files ├── output/ # Directory for generated reports └── README.md # This file ``` ## Troubleshooting ### No Excel files found Ensure your Excel files are in the `reports/` directory and have `.xlsx` or `.xls` extensions. ### Date parsing errors The tool supports common date formats: - `MM/DD/YY` (e.g., `10/14/25`) - `MM/DD/YYYY` (e.g., `10/14/2025`) - `YYYY-MM-DD` (e.g., `2025-10-17`) - `YYYY-MM-DD HH:MM:SS` (e.g., `2025-10-17 00:00:00`) ### Permission errors If you encounter permission errors, ensure you have write access to the `output/` directory. ### Missing dependencies If you get import errors, ensure all dependencies are installed: ```bash pip install -r requirements.txt ``` ## Timezone Notes The tool uses **Baltimore/Eastern timezone (America/New_York)** for all date calculations. This ensures consistent 24-hour window calculations regardless of where the script is run. All dates are stored as timezone-aware datetime objects. ## License [Add your license information here] ## Contributing [Add contribution guidelines if applicable] ## Support For issues or questions, please contact [your contact information or issue tracker URL].