"""Classes for working with the Gemini models.""" from __future__ import annotations import dataclasses import textwrap # pylint: disable=bad-continuation, line-too-long from collections.abc import Iterable from google.ai import generativelanguage as glm from google.generativeai import client from google.generativeai import string_utils from google.generativeai.types import content_types from google.generativeai.types import generation_types from google.generativeai.types import safety_types _GENERATE_CONTENT_ASYNC_DOC = """The async version of `GenerativeModel.generate_content`.""" _GENERATE_CONTENT_DOC = """A multipurpose function to generate responses from the model. This `GenerativeModel.generate_content` method can handle multimodal input, and multi-turn conversations. >>> model = genai.GenerativeModel('models/gemini-pro') >>> result = model.generate_content('Tell me a story about a magic backpack') >>> response.text ### Streaming This method supports streaming with the `stream=True`. The result has the same type as the non streaming case, but you can iterate over the response chunks as they become available: >>> result = model.generate_content('Tell me a story about a magic backpack', stream=True) >>> for chunk in response: ... print(chunk.text) ### Multi-turn This method supports multi-turn chats but is **stateless**: the entire conversation history needs to be sent with each request. This takes some manual management but gives you complete control: >>> messages = [{'role':'user', 'parts': ['hello']}] >>> response = model.generate_content(messages) # "Hello, how can I help" >>> messages.append(response.candidates[0].content) >>> messages.append({'role':'user', 'parts': ['How does quantum physics work?']}) >>> response = model.generate_content(messages) For a simpler multi-turn interface see `GenerativeModel.start_chat`. ### Input type flexibility While the underlying API strictly expects a `list[glm.Content]` objects, this method will convert the user input into the correct type. The hierarchy of types that can be converted is below. Any of these objects can be passed as an equivalent `dict`. * `Iterable[glm.Content]` * `glm.Content` * `Iterable[glm.Part]` * `glm.Part` * `str`, `Image`, or `glm.Blob` In an `Iterable[glm.Content]` each `content` is a separate message. But note that an `Iterable[glm.Part]` is taken as the parts of a single message. Arguments: contents: The contents serving as the model's prompt. generation_config: Overrides for the model's generation config. safety_settings: Overrides for the model's safety settings. stream: If True, yield response chunks as they are generated. """ _SEND_MESSAGE_ASYNC_DOC = """The async version of `ChatSession.send_message`.""" _SEND_MESSAGE_DOC = """Sends the conversation history with the added message and returns the model's response. Appends the request and response to the conversation history. >>> model = genai.GenerativeModel(model="gemini-pro") >>> chat = model.start_chat() >>> response = chat.send_message("Hello") >>> print(response.text) "Hello! How can I assist you today?" >>> len(chat.history) 2 Call it with `stream=True` to receive response chunks as they are generated: >>> chat = model.start_chat() >>> response = chat.send_message("Explain quantum physics", stream=True) >>> for chunk in response: ... print(chunk.text, end='') Once iteration over chunks is complete, the `response` and `ChatSession` are in states identical to the `stream=False` case. Some properties are not available until iteration is complete. Like `GenerativeModel.generate_content` this method lets you override the model's `generation_config` and `safety_settings`. Arguments: content: The message contents. generation_config: Overrides for the model's generation config. safety_settings: Overrides for the model's safety settings. stream: If True, yield response chunks as they are generated. """ class GenerativeModel: """ The `genai.GenerativeModel` class wraps default parameters for calls to `GenerativeModel.generate_message`, `GenerativeModel.count_tokens`, and `GenerativeModel.start_chat`. This family of functionality is designed to support multi-turn conversations, and multimodal requests. What media-types are supported for input and output is model-dependant. >>> import google.generativeai as genai >>> import PIL.Image >>> genai.configure(api_key='YOUR_API_KEY') >>> model = genai.GenerativeModel('models/gemini-pro') >>> result = model.generate_content('Tell me a story about a magic backpack') >>> response.text "In the quaint little town of Lakeside, there lived a young girl named Lily..." Multimodal input: >>> model = genai.GenerativeModel('models/gemini-pro') >>> result = model.generate_content([ ... "Give me a recipe for these:", PIL.Image.open('scones.jpeg')]) >>> response.text "**Blueberry Scones** ..." Multi-turn conversation: >>> chat = model.start_chat() >>> response = chat.send_message("Hi, I have some questions for you.") >>> response.text "Sure, I'll do my best to answer your questions..." To list the compatible model names use: >>> for m in genai.list_models(): ... if 'generateContent' in m.supported_generation_methods: ... print(m.name) Arguments: model_name: The name of the model to query. To list compatible models use safety_settings: Sets the default safety filters. This controls which content is blocked by the api before being returned. generation_config: A `genai.GenerationConfig` setting the default generation parameters to use. """ def __init__( self, model_name: str = "gemini-m", safety_settings: safety_types.SafetySettingOptions | None = None, generation_config: generation_types.GenerationConfigType | None = None, ): if "/" not in model_name: model_name = "models/" + model_name self._model_name = model_name self._safety_settings = safety_types.to_easy_safety_dict( safety_settings, harm_category_set="new" ) self._generation_config = generation_types.to_generation_config_dict(generation_config) self._client = None self._async_client = None @property def model_name(self): return self._model_name def __str__(self): return textwrap.dedent( f""" \ genai.GenerativeModel( model_name='{self.model_name}', generation_config={self._generation_config}. safety_settings={self._safety_settings} )""" ) __repr__ = __str__ def _prepare_request( self, *, contents: content_types.ContentsType, generation_config: generation_types.GenerationConfigType | None = None, safety_settings: safety_types.SafetySettingOptions | None = None, **kwargs, ) -> glm.GenerateContentRequest: """Creates a `glm.GenerateContentRequest` from raw inputs.""" if not contents: raise TypeError("contents must not be empty") contents = content_types.to_contents(contents) generation_config = generation_types.to_generation_config_dict(generation_config) merged_gc = self._generation_config.copy() merged_gc.update(generation_config) safety_settings = safety_types.to_easy_safety_dict(safety_settings, harm_category_set="new") merged_ss = self._safety_settings.copy() merged_ss.update(safety_settings) merged_ss = safety_types.normalize_safety_settings(merged_ss, harm_category_set="new") return glm.GenerateContentRequest( model=self._model_name, contents=contents, generation_config=merged_gc, safety_settings=merged_ss, **kwargs, ) @string_utils.set_doc(_GENERATE_CONTENT_DOC) def generate_content( self, contents: content_types.ContentsType, *, generation_config: generation_types.GenerationConfigType | None = None, safety_settings: safety_types.SafetySettingOptions | None = None, stream: bool = False, **kwargs, ) -> generation_types.GenerateContentResponse: request = self._prepare_request( contents=contents, generation_config=generation_config, safety_settings=safety_settings, **kwargs, ) if self._client is None: self._client = client.get_default_generative_client() if stream: with generation_types.rewrite_stream_error(): iterator = self._client.stream_generate_content(request) return generation_types.GenerateContentResponse.from_iterator(iterator) else: response = self._client.generate_content(request) return generation_types.GenerateContentResponse.from_response(response) @string_utils.set_doc(_GENERATE_CONTENT_ASYNC_DOC) async def generate_content_async( self, contents: content_types.ContentsType, *, generation_config: generation_types.GenerationConfigType | None = None, safety_settings: safety_types.SafetySettingOptions | None = None, stream: bool = False, **kwargs, ) -> generation_types.AsyncGenerateContentResponse: request = self._prepare_request( contents=contents, generation_config=generation_config, safety_settings=safety_settings, **kwargs, ) if self._async_client is None: self._async_client = client.get_default_generative_async_client() if stream: with generation_types.rewrite_stream_error(): iterator = await self._async_client.stream_generate_content(request) return await generation_types.AsyncGenerateContentResponse.from_aiterator(iterator) else: response = await self._async_client.generate_content(request) return generation_types.AsyncGenerateContentResponse.from_response(response) # fmt: off def count_tokens( self, contents: content_types.ContentsType ) -> glm.CountTokensResponse: contents = content_types.to_contents(contents) return self._client.count_tokens(self.model_name, contents) async def count_tokens_async( self, contents: content_types.ContentsType ) -> glm.CountTokensResponse: contents = content_types.to_contents(contents) return await self._client.count_tokens(self.model_name, contents) # fmt: on def start_chat( self, *, history: Iterable[content_types.StrictContentType] | None = None, ) -> ChatSession: """Returns a `genai.ChatSession` attached to this model. >>> model = genai.GenerativeModel() >>> chat = model.start_chat(history=[...]) >>> response = chat.send_message("Hello?") Arguments: history: An iterable of `glm.Content` objects, or equvalents to initialize the session. """ if self._generation_config.get("candidate_count", 1) > 1: raise ValueError("Can't chat with `candidate_count > 1`") return ChatSession( model=self, history=history, ) class ChatSession: """Contains an ongoing conversation with the model. >>> model = genai.GenerativeModel(model="gemini-pro") >>> chat = model.start_chat() >>> response = chat.send_message("Hello") >>> print(response.text) >>> response = chat.send_message(...) This `ChatSession` object collects the messages sent and received, in its `ChatSession.history` attribute. Arguments: model: The model to use in the chat. history: A chat history to initialize the object with. """ _USER_ROLE = "user" _MODEL_ROLE = "model" def __init__( self, model: GenerativeModel, history: Iterable[content_types.StrictContentType] | None = None, ): self.model: GenerativeModel = model self._history: list[glm.Content] = content_types.to_contents(history) self._last_sent: glm.Content | None = None self._last_received: generation_types.BaseGenerateContentResponse | None = None @string_utils.set_doc(_SEND_MESSAGE_DOC) def send_message( self, content: content_types.ContentType, *, generation_config: generation_types.GenerationConfigType = None, safety_settings: safety_types.SafetySettingOptions = None, stream: bool = False, **kwargs, ) -> generation_types.GenerateContentResponse: content = content_types.to_content(content) if not content.role: content.role = self._USER_ROLE history = self.history[:] history.append(content) generation_config = generation_types.to_generation_config_dict(generation_config) if generation_config.get("candidate_count", 1) > 1: raise ValueError("Can't chat with `candidate_count > 1`") response = self.model.generate_content( contents=history, generation_config=generation_config, safety_settings=safety_settings, stream=stream, **kwargs, ) if response.prompt_feedback.block_reason: raise generation_types.BlockedPromptException(response.prompt_feedback) if not stream: if response.candidates[0].finish_reason not in ( glm.Candidate.FinishReason.FINISH_REASON_UNSPECIFIED, glm.Candidate.FinishReason.STOP, glm.Candidate.FinishReason.MAX_TOKENS, ): raise generation_types.StopCandidateException(response.candidates[0]) self._last_sent = content self._last_received = response return response @string_utils.set_doc(_SEND_MESSAGE_ASYNC_DOC) async def send_message_async( self, content: content_types.ContentType, *, generation_config: generation_types.GenerationConfigType = None, safety_settings: safety_types.SafetySettingOptions = None, stream: bool = False, **kwargs, ) -> generation_types.AsyncGenerateContentResponse: content = content_types.to_content(content) if not content.role: content.role = self._USER_ROLE history = self.history[:] history.append(content) generation_config = generation_types.to_generation_config_dict(generation_config) if generation_config.get("candidate_count", 1) > 1: raise ValueError("Can't chat with `candidate_count > 1`") response = await self.model.generate_content_async( contents=history, generation_config=generation_config, safety_settings=safety_settings, stream=stream, **kwargs, ) if response.prompt_feedback.block_reason: raise generation_types.BlockedPromptException(response.prompt_feedback) if not stream: if response.candidates[0].finish_reason not in ( glm.Candidate.FinishReason.FINISH_REASON_UNSPECIFIED, glm.Candidate.FinishReason.STOP, glm.Candidate.FinishReason.MAX_TOKENS, ): raise generation_types.StopCandidateException(response.candidates[0]) self._last_sent = content self._last_received = response return response def __copy__(self): return ChatSession( model=self.model, # Be sure the copy doesn't share the history. history=list(self.history), ) def rewind(self) -> tuple[glm.Content, glm.Content]: """Removes the last request/response pair from the chat history.""" if self._last_received is None: result = self._history.pop(-2), self._history.pop() return result else: result = self._last_sent, self._last_received.candidates[0].content self._last_sent = None self._last_received = None return result @property def last(self) -> generation_types.BaseGenerateContentResponse | None: """returns the last received `genai.GenerateContentResponse`""" return self._last_received @property def history(self) -> list[glm.Content]: """The chat history.""" last = self._last_received if last is None: return self._history if last.candidates[0].finish_reason not in ( glm.Candidate.FinishReason.FINISH_REASON_UNSPECIFIED, glm.Candidate.FinishReason.STOP, glm.Candidate.FinishReason.MAX_TOKENS, ): error = generation_types.StopCandidateException(last.candidates[0]) last._error = error if last._error is not None: raise generation_types.BrokenResponseError( "Can not build a coherent char history after a broken " "streaming response " "(See the previous Exception fro details). " "To inspect the last response object, use `chat.last`." "To remove the last request/response `Content` objects from the chat " "call `last_send, last_received = chat.rewind()` and continue " "without it." ) from last._error sent = self._last_sent received = self._last_received.candidates[0].content if not received.role: received.role = self._MODEL_ROLE self._history.extend([sent, received]) self._last_sent = None self._last_received = None return self._history @history.setter def history(self, history): self._history = content_types.to_contents(history) self._last_self = None self._last_received = None